NuMI Hadron and Muon Monitoring

Robert Zwaska
University of Texas at Austin

NBI 2003 November 10, 2003

System Geography

Particle Fluences

- Neutron fluences are ~ 10× that of charged particles at Hadron Monitor & Alcove 1 locations
- Hadron Monitor insensitive to horn focusing
- Muon Monitor distributions flat

Role of Monitors

- Commissioning the beam check of alignment
 - ➤ Proton beam Hadron Monitor
 - ➤ Neutrino beam Muon Monitor
- Normal beam operations ensure optimal beam
 - ➤ Proton beam angle Hadron Monitor
 - ➤ Target integrity Hadron Monitor
 - ➤ Horn integrity, position muon monitor
- Re-commissioning the beam if optics moved

Information in Alcoves

- Hadron Monitor swamped by π 's, protons, e^+e^-
- Alcoves have sharp cutoff energies
- Even Alcove 1 doesn't see softest parents

Flexible Energy Beam

- Low E_{ν} beam flat, hard to monitor relevant parent particles.
- Best way to focus higher energy pions: focus smaller angles.
- Place target on rail system for remote motion capability.

M. Kostin, S. Kopp, M. Messier, D. Harris, J. Hylen, A. Para

Variable Beam as Monitoring Tool

- Muon alcoves have narrow acceptance (long decay tube!)
- As E_{v} increased, decay products boosted forward
- See peak in particle fluxes as energy increases

 Use variable beam as periodic monitoring diagnostic

-D. Harris

Muon Monitors

• Alignment of v beam

- ➤ Beam center to ~ few cm
- > Lever arm is 740, 750, 770 m
- > v beam direction to ~ 100 μrad
- Can measure in 1 beam spill
- ➤ Requires special ME/HE running

As beam monitor

- ➤ Rates sensitive to targeting
- Centroid sensitive to horn focusing
- Centroid requires ME/HE run (1 spill)

Parallel Plate Ion Chambers

Sense wafer, chamber side

- $11.4 \times 11.4 \text{ cm}^2 \text{ Al}_2\text{O}_3$ ceramic wafers
- Ag-plated Pt electrodes
- Similar HV ceramic wafer
- Holes in corners for mounting
- Vias to solder pads on reverse side.
- Separate mechanical support and electrical contacts
- Adopt design with electrical & mechanical contacts in corner holes Chamber gap depends on station
- Ionization medium: Helium gas at atmospheric pressure

Booster Beam Test

Fermilab Booster Accelerator

8 GeV proton beam 5×10⁹ - 5×10¹² protons/spill 5 cm² beam spot size

- Two chambers tested (1mm & 2mm gas gap)
- 2 PCB segmented ion chambers for beam profile.
- Toroid for beam intensity

High-Intensity Beam Test

Fermilab Booster

8 GeV proton beam 5×10⁹ - 5×10¹² protons/spill 5 cm² beam spot size 1mm and 2mm chamber gaps tested

R. Zwaska et al., IEEE Trans. Nucl. Sci. **50**, 1129 (2003)

- See onset of charge loss at 4×10^{10} protons/cm²/spill.
 - Effect of recombination as chamber field is screened by ionization.

Simulating a Chamber

Simulate Multiplication and Recombination

- ► Use the same volume recombination: $\frac{dn}{dt} = -kn_{+}n_{-}$
- ► Include gas multiplication: $\frac{dN}{dx} = N\alpha$ $\frac{\alpha}{P} = A \exp \left[-\frac{B}{(E/P)} \right]$
- > Space Charge creates an electric field larger than the applied field

Plateau Curves

Curves converge in a region of voltage near a gain of 1

➤Data suggests 15-20 electron-ion pairs / cm

Neutron Backgrounds

- Neutron Fluxes are comparable to charged particle fluxes
 - ➤ 10x in Hadron Monitor
 - ➤ 10x in Muon Monitor 1
 - From Beam Dump
 - > Smaller in other locations
- Neutrons create ionization by nuclear recoils
- Measured ionization from PuBe neutron sources
 - > 1-10 MeV
 - > 55 Ci

Neutron Signals

Ion Pairs / cm	He Gas	Ar Gas
Neutrons	1.1 ± 0.2	9.6 ± 2.6
Charged Particles	16	120

Results ⇒ signal:noise is 1:1 in monitors? -preliminary-

System Design

- Hadron Monitor
 - \rightarrow 7x7 grid \rightarrow 1x1 m²
 - 1 mm gap chambers
 - > Radiation Hard design
 - Mass minimized for residual activation
 - 57 Rem/hr
- Muon Monitors
 - \triangleright 9 tubes of 9 chambers each \rightarrow 2.2x2.2 m²
 - 3 mm gap chambers
 - > Tube design allows repair
- High Voltage (100-500 V) applied over He gas
 - > Signal acquired with charge-integrating amplifiers

Radiation Damage Tests

@ UT Nuclear Engineering Teaching Lab Reactor

• Delivered 12GRad ≈ 9NuMIyrs

Hadron Monitor Construction

front window

rear feedthrough base

Muon Monitor Construction

Assembly

Signal Cables

1 μ Ci ²⁴¹Am α Calibration Source

Tray

HV cables

Muon Monitor Calibration

- •Precision of ion current ~0.1pA
- •Results show ~10% variations due to construction variations

- •Establish relative calibration of all 270 chambers to <1%.
- •Irradiate every chamber with 1Ci Am²⁴¹ source (30-60 keV γ's)

Summary

- Hadron & Muon Monitors provide information on:
 - ➤ Beam alignment (proton & secondary)
 - > Target Integrity
 - Optics Quality
- Signals come from hadrons, muons, and neutrons
- Variable energy beam allows more information to be collected
- Detector hardware tested at high intensity
 - ➤ Linearity is adequate
 - > Behavior is understood through simulation
- Neutron backgrounds estimated & characterized
 - ➤ Neutron signal might be comparable to (other) hadron signal
- Systems designed, built, & calibrated
 - ➤ Components tested for radiation damage

23